skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McMahan, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As computer architecture continues to expand beyond software-agnostic microarchitecture to data center organization, reconfigurable logic, heterogeneous systems, application-specific logic, and even radically different technologies such as quantum computing, detailed cycle-level simulation is no longer presupposed. Exploring designs under such complex interacting relationships (e.g., performance, energy, thermal, cost, voltage, frequency, cooling energy, leakage, etc.) calls for a more integrative but higher-level approach. We propose Charm, a domain specific language supporting Closed-form High-level ARchitecture Modeling. Charm enables mathematical representations of mutually dependent architectural relationships to be specified, composed, checked, evaluated and reused. The language is interpreted through a combination of symbolic evaluation (e.g., restructuring) and compiler techniques (e.g., memoization and invariant hoisting), generating executable evaluation functions and optimized analysis procedures. Further supporting reuse, a type system constrains architectural quantities and ensures models operate only in a validated domain. Through two case studies, we demonstrate that Charm allows one to define high-level architecture models concisely, maximize reusability, capture unreasonable assumptions and inputs, and significantly speedup design space exploration. 
    more » « less